Structure and catalysis of acylaminoacyl peptidase: closed and open subunits of a dimer oligopeptidase.

نویسندگان

  • Veronika Harmat
  • Klarissza Domokos
  • Dóra K Menyhárd
  • Anna Palló
  • Zoltán Szeltner
  • Ilona Szamosi
  • Tamás Beke-Somfai
  • Gábor Náray-Szabó
  • László Polgár
چکیده

Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal Structures of Trypanosoma brucei Oligopeptidase B Broaden the Paradigm of Catalytic Regulation in Prolyl Oligopeptidase Family Enzymes

Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness...

متن کامل

Mechanisms of Intramolecular Communication in a Hyperthermophilic Acylaminoacyl Peptidase: A Molecular Dynamics Investigation

Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) fami...

متن کامل

Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase.

Acylaminoacyl peptidase (also known as acylamino-acid-releasing enzyme or acylpeptide hydrolase; EC 3.4.19.1) is an unusual member of the prolyl oligopeptidase family catalysing the hydrolysis of an N-acylated peptide to an acylamino acid and a peptide with a free N-terminus. Acylaminoacyl peptidase purified from porcine liver has been crystallized in mother liquor containing 0.1 M Tris-HCl pH ...

متن کامل

OsPOP5, A Prolyl Oligopeptidase Family Gene from Rice Confers Abiotic Stress Tolerance in Escherichia coli

The prolyl oligopeptidase family, which is a group of serine peptidases, can hydrolyze peptides smaller than 30 residues. The prolyl oligopeptidase family in plants includes four members, which are prolyl oligopeptidase (POP, EC3.4.21.26), dipeptidyl peptidase IV (DPPIV, EC3.4.14.5), oligopeptidase B (OPB, EC3.4.21.83), and acylaminoacyl peptidase (ACPH, EC3.4.19.1). POP is found in human and r...

متن کامل

Yeast Alcohol Dehydrogenase Structure and Catalysis

Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 3  شماره 

صفحات  -

تاریخ انتشار 2011